A New Fast and Robust Collision Detection and Force Computation Algorithm Applied to the Physics Engine Bullet: Method, Integration, and Evaluation
نویسندگان
چکیده
We present a collision detection and force computation algorithm based on the Voxelmap-Pointshell Algorithm which was integrated and evaluated in the physics engine Bullet. Our algorithm uses signed distance fields and point-sphere trees and it is able to compute collision forces between arbitrary complex shapes at simulation frequencies smaller than 1 msec. Utilizing sphere hierarchies, we are able to rapidly detect likely colliding areas, while the point trees can be used for processing colliding regions in a level-of-detail manner. The integration into the physics engine Bullet was performed inheriting interface classes provided in that framework. We compared our algorithm with Bullet’s native GJK, GJK with convex decomposition, and GImpact, varying the resolution and the scenarios. Our experiments show that our integrated algorithm performs with similar computation times as the standard collision detection algorithms in Bullet if low resolutions are chosen. With high resolutions, our algorithm outperforms Bullet’s native implementations and objects behave realistically.
منابع مشابه
A Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملA Robust Strucutural Fingerprint Restoration
Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...
متن کاملIntegration of Collision Detection with the Multibody System Library in Modelica
Collision detection and response is one of the most difficult areas in simulation of multibody systems. Two known approaches, the impulse-based method and the force-based (penalty) method, can be applied for multibody simulation in Modelica[13]. The impulse-based method requires instantaneous modification of some variables, but such modification is not always possible in Modelica. The force-bas...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کامل